

LXB-3Y 流量积算仪

使用说明书

青岛自动化仪表有限公司

地址:青岛市重庆北路 16 号 电话: 0532-66916862 邮编: 266108 传真: 0532-66916837 网址: http://www.glvb.cn

	日 录
-,	概述1
二、	主要技术指标
三、	仪表功能介绍2
四、	仪表显示操作面板2
五、	仪表编程方法3
六、	仪表运行参数显示画面8
七、	仪表记录参数查看、曲线显示12
八、	仪表安装接线及使用
九、	配置打印机使用说明
+、	仪表工作方式说明
+-、	附录仪表计算公式
本产品系	实行质量三包, 产品终身维修 条由话 · 0532-66919467
HT /H AK 2	

一. 概述

LXB-3Y 型流量显示仪是采用微处理器为核心构成的智能化仪表。仪表接收具 有脉冲信号输出或模拟电流信号输出的流量传感器信号,配上压力和温度变送器或铂电 阻,组成高精度流量测量系统。在仪表软件支持下,可对多种被测介质(饱和蒸汽、过热 蒸汽、一般气体、液体等)进行在线温度、压力补偿运算。修改仪表编程参数即可对不同 的流体介质进行测量积算。仪表使用中文液晶显示屏幕,实时测量参数和历史记忆参数可 用曲线图形方式显示。

- 二. 主要技术指标
- 1. 仪表精度:

累计量累积准确度: ±0.5%

瞬时量显示准确度: ±1%

- 2.最大累计量显示: 99999999 kg (Nm³或 m³)
- 3. 输入模拟信号: 0~10 mA 或 4~20mA DC
 - PT100 铂电阻信号: 三线制、测温范围: 0~450℃
 - 流量脉冲电压信号: 1~5000Hz、Vpp=4~11V(三线制)
- 4. 外供电源: +24V 电压一组,输出电流 50 mA +12V 电压一组,输出电流 50 mA
- 5.输出信号: 0~10mA 模拟电流,最大负载电阻 500Ω
 4~20mA 模拟电流,最大负载电阻 300Ω
 - 串行接口: RS232 或 RS485 方式(二选一)
 - 打印接口: 可配接 RS232 接口微型打印机

1

- 6.供电电源: AC 220V±10% 50Hz
- 7.功耗: ≤6W
- 8. 工作环境: 0~40℃,相对湿度≤85%
- 9.外形尺寸: 高×宽×长=80×160×75.2(显示仪)

三. 仪表功能介绍

仪表由硬件电路和程序软件两部分组成。模拟电流信号经 I/V 转换, PT100 铂电 阻信号经放大,都送到模拟开关中,由仪表程序控制分时送到 A/D 转换器中转换为数字 信号送到微处理器中,流量脉冲信号经光电隔离整形后也送到微处理器中进行计数累计。 在微处理器的控制下,仪表对输入信号进行综合处理,完成流量积算累计显示功能。仪表 提供 33 种工作方式,用户可通过在仪表面板上编程,选择其中一种,配上不同的一次仪 表,构成需要的流量计量系统。各种工作方式下可测量的流体介质和需配制的一次仪表参 看表(一)。

四. 仪表显示操作面板

五. 仪表编程方法

仪表投入运行前,用户应根据被测介质以及配制的一次表的种类等在表(一)中选择合适的工作方式,然后进行设置参数编程。输入完编程参数后,应对本次设置的数据进 行保存操作。如编程过程中按参数键,可立即退出编程操作。

仪表编程设置参数为全中文菜单显示。进入编程显示界面后,使用增加键、右移键完 成参数设置。设置完一项参数后按进入键确认,并进入下一项参数设置显示。

仪表编程参数输入详细过程说明

1、按编程键六次,进入编程显示初始界面

<QLYB> 编程次数: 0028 上次编程时间: 06-09-16 09:45

2、按进入键,进入密码输入显示界面

用增加键修改闪烁位值,用右移键选择修改位。输 入完 4 位正确密码,按进入键即进入下面编程参数 设置显示界面。

3、仪表时钟调整界面

	时钟调整	
日期:	06-05-12	
时间:	16:35:50	
《按数据键确认》		

日期设置和时间设置,字体反白显示的为当前可修 改项。用增加键修改闪烁位值,用右移键选择修改 位。先设置日期,设置完后,按数据键确认,再按 进入键设置时间,同样按数据键确认。如不需重新 设置时钟,直接按进入键两次,进入工作方式设置

界面。

4、工作方式设置界面

方式 05	单位: T
流量信号 →	脉冲
测量介质 →	过热
补偿 →	压变铂阻

方式后面显示的数字为工作方式号,共可选择 1~33 种工作方式。流量单位、流量信号、测量介 质、补偿 方式根据工作方式不同而变化,参看表 (一)的说明。按进入键进入下一项参数设置。

5、流量传感器参数设置:

根据配置的流量传感器不同, 仪表自动选择三种设置方式:

A、脉冲信号输出传感器参数设置

<qlyb:< th=""><th>></th></qlyb:<>	>
仪表常数:	N/m³
00	0145.94
切除信号:	01Hz

当工作方式为1~15时,流量信号为脉冲,需

设置涡街传感器仪表常数,小信号切除频率值。切除频率值范围: 00~99Hz。

B、模拟信号输出传感器参数设置

<QLYB>

满度流量: m³/h

005000.5

切除信号: 0.5%

当工作方式为16~27时,流量信号为4~20mA 模拟电流,需设置模拟电流最大值对应的满度流量值, 小信号切除百分值。切除百分值范围: 0.0~9.9%

C、差压信号输出传感器参数设置

<QLYB>

差压量程: KPa

0060.000

切除信号: 4.0%

号,需设置差压变送器量程,小信号切除百分值,切 除百分值范围:0.0~9.9%。

当工作方式为 28~33 时, 流量信号为差压信

<QLYB> 孔板系数:

K = 0460.345

6、压力变送器参数设置界面

<qlyb< th=""><th>></th></qlyb<>	>
压力单位:	MPa
压变量程:	1.600
压变电流:	4-20mA

当工作方式为 28~33 时,需设置孔板系数 K 值,

K= 0.0039986
$$\frac{C}{\sqrt{1-\beta^4}} \epsilon d^2$$

具体数值可查孔板设计书计算地出。

当选择带压力补偿的工作方式时,需对配置的压 力变送器进行设置,共3项内容:压力单位、压力变 送器量程、压力变送器输出电流。按增加键,压力单

LXB-3Y 流量积算仪

位在 MPa 和, KPa 间变换,用增加键和右移键输入压变量程值,按增加键,压变输出电流在 0-10 和 4-20 间变换。按进入键确认输入参数。

<qlyb< th=""><th>></th></qlyb<>	>
温变量下:	+00°C
温变量上:	350℃
温变电流:	0-10mA

7、温度变送器参数设置界面

当选择带温度变送器补偿的工作方式时,需对配 置的温度变送器进行设置。共3项内容:温变下量程, 温变上量程,温变输电 流。下量程带正负符号,按 增加键,符号位在+和-间变换。用增加键和右移键 输入温变量程值,按增加键选择温变输出电流

8、设定压力、设定温度参数设置界面

<QLYB> 设定压力:

1.234 MPa

设定温度: +350 ℃

<qlyb></qlyb>		
流量单位:	T/h	
流量上限 <mark>:</mark>	100.000	
流量下限:	001.000	

<qlyb></qlyb>		
大气:	101325 Pa	
标温:	20 °C	
密度 :	01.1270Kg/M ³	

选择带设定压力或设定温度的工作方式时,设置 压力或温度为固定数值。设定压力和设定温度数值作 为仪表进行压力和温度曲线显示时的上限值。

9、瞬时流量上限、流量下限参数设置界面

仪表输出的 4-20mA 模拟电流与设定的流量上限值成 比例。设定的流量上限值作为仪表进行瞬时流量曲线 显示时的流量上限数值。 流量下限暂无作用,可不设 置。

10、标准温度、参考密度参数设置界面

当测量介质为气体时,需设置参考标温(标准温 度)。当测量介质为气体并按质量进行计算累计时, 需设置参考密度数值。 11、输出电流、记录间隔时间参数设置

<qlyb></qlyb>	
输出电流:	20mA
记录间隔:	10 分钟
背光控制 :	自动

选择输出模拟电流形式,按增加键输出电流在10 和20mA间变换。按进入键确认。选择记录间隔时间, 按增加键记录间隔在01、05、10、20、30、60间变 换,按进入键确认。按增加键选择液晶屏背光控制: 自动或常亮。

<qlyb:< th=""><th>></th></qlyb:<>	>
打印端口:	打开
打印起始:	08 时
打印间隔:	12 时

<QLYB> 本机地址: 01

通信波特: 2400

显示选项

3. 大累计 4. 大瞬时

1. 频率瞬时累计

2. 压力温度密度

08

12、打印功能设置

按增加键打印端口在"打开"和"关闭"间变换,按进入键确认。输入打印起始时间,按进入键确认。输入打印起始时间,按进入键确认,输入打印间隔时间,按进入键确认。

13、通信功能设置

输入本机地址,范围为 00~99,按进入键确认。 再按进入键,设置通信波特率,按增加键,通信波特在 1200、2400、4800、9600 间变换,按进入键确认。

7

按增加键选择仪表运行时需要显示的工况参数和 显示屏数。显示选项下面显示的数字1、2、3、4表 示一屏显示的内容,显示选项右边的数字表示可以选取

的显示组合。共有10项组合显示。按进入键确认。

	, ↓5、 删除 撰作
一 删除操作 停电数据 000000 累计数据 历史数据	删除操作共三项。操作示例:如要删除停电数 据记录,按右移键使6个"〇"符号依次消失,停 电数据记录即被删除。按进入键,进入下一删除项, 进行同样操作,累计数据即被删除。如不需删除数 据,就连续按进入键,进入保存设置参数显示界面。
<qlyb> 保存设置参数?</qlyb>	 16、保存设置参数
否 是	参数设置完成后,应当进行保存操作。按右移
	键,选择文字"是",再按进入键,仪表显示"参
	」 数保存成功",并退出编程显示,仪表进入运行显 、
示 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不	\ 谜 后 刂 继 绬 쩝 笪 朻 修 戉 编 桂 参 致 。

以上是全部编程画面显示。当参数设置项后面显示"---"符号时,表示不必进行 参数设置,可连续按进入键,进入下一项参数设置操作。

六. 仪表运行参数显示画面

压力	1.234 MPa
温度	285.5 °C
频率	1209.5 Hz
14:20	0 06-09-27

仪表设置有多种运行参数显示画面,通过编程 设置中的"运行参数显示选项"进行设定。瞬时 流量和累计流量参数有大数字单屏显示方式。运 行显示画面如下:

1、压力、温度、频率组合显示

屏幕下边显示的是仪表时钟,左边为小时和分钟,右边年、月、日,中间显示符号 "〇"时,表示仪表处在循环显示状态。

压力	1.234 MPa
温度	285.5 °C
密度	5.307 Kg/m ³
14:20	0 06-09-27

频率	829.6 Hz
瞬时	16.123 T/h
累计	987.456 T
14:20	0 06-09-27

2、压力、温度、密度组合显示

3. 频率、瞬时、累计组合显示

4,瞬时流量显示画面

累计流量显示画面

时,每隔8秒自动进行显示画面转换。连续按进入键6次,显示画面中出现"〇"字符时,

为循环显示,再连续按进入键6次,"〇"字符消失,即取消循环显示。可随时按循环键, 手动查看运行显示参数。按曲线键,可显示瞬时流量、压力、温度实时曲线,详细操作见 下面说明。

七. 仪表记录参数查看、曲线显示

仪表记录参数分为三类:停电记录数据、累计记录数据、历史记录数据。

1、仪表停电记录数据查看

按数据键, 仪表进入数据查看显示画面:

停电记录显示画面:显示停电累计次数 和累计停电时间。按下翻键,进入下面的来 电时间和停电时间记录查看画面。

第一行显示的是最近一次来电时间,第

二行显示最近一次停电时间,下面依次类推。

共可显示 30 次来电、停电时间记录。按下翻键进行顺序查看。按循环键退出仪表停电 记录数据查看画面。

08-31	15:30
08-31	10:30
08-26	09:47
08-26	08:23
	08-31 08-31 08-26 08-26

2、累计报表数据查看

按数据键, 仪表进入数据查看显示画面:

按下翻键,使显示光标指向累计报表数据行,再 按数据键,进入下面的累计报表选择查看显示画 面。

小时累计报表、日期累计报表、月份累计报表选择查看显示画面。按下翻键,使光标指向不同报 表显示行,再按数据键,即进入下面的小时、日 期、月份累计报表显示画面。

小时累计报表显示画面显示内容为当前0点到 23点正点时间累计总量数据。每屏显示三行数据, 按下翻键,进行循环查看。按数据键,可返回到 累计报表选择查看画面。按循环键,结束查看。

日期报表月份选择显示画面按下翻键月份 数值在 0~12 间变换。如要查看 06 月份的单日累 计总量,按下翻键使月份值为 06,再按数据键, 即进入日期累计总量显示画面。

日累计报表显示画面显示的累计数据为到当 日0点时的累计值。按下翻键依次显示本月月初日 期到月末日期的累计数据。按数据键可返回到数据 查看显示画面,按循环键结束查看。

 $1 \ 1$

月份累计报表					
01:	02639.290				
02:	03123.123				
03:	03617.281				

月份累计报表显示画面显示累计数据为到本月末 的累计数据按下翻键依次显示 1~12 月份的累计 值。按数据键可返回到数据查看显示画面,按循 环键结束查看。

3、历史记录数据查看

历史记录数据是指仪表运行时的瞬时流量、压力、温度数据。仪表对这三组数据按 设定的记录间隔时间进行定点记录,最多记录 6000 组数据。历史记录数据查看分为直接 查看数据值、用曲线方式连续显示 48 点记录数据的百分比值两种方式。

历史记录数据查看操作方法

按数据键, 仪表进入数据查看显示画面:

按下翻键,使显示光标指向历史记录数据行,再 按数据键,进入下面的历史记录数据 初始显示 画面。

记录起始时间: 06-08-26 12:30 记录间隔: 10分钟 记录次数: ×:2896

初始显示画面显示三项内容:记录起始时间:年、 月、日、时、分 记录间隔时间: ××分钟已经 记录次数:×数值为0-9,表示记录循 环倍数。 按数据键进入记录数据查看画面

1 2

青岛自动化仪表有限公司

2896	09-12 13:50
瞬时	27.638 T/h
压力	0.852 MPa 🛔
温度	171. 3°C ×

历史记录数据查看画面有 5 项内容:记录序 号:如 2896,最大值为 6000 记录时间:09-12 13:50 表示本条数据 记录时间 9 月 12 日 13 点 50 分 三组记录数据:瞬时、压力、温度值 按上翻和 下翻键对历史记录数据进行查看。按下翻键时

记录序号增加,时间值增加,查看的是相对以后的数据;按上翻键记录序号减少,查 看的是相对以前的数据。 ×是下、上翻倍率指示,按数据键×在1~4间变化,为 1时,按下、上翻键,记录序号加减1,为2时,按上、下翻键,记录序号加减10, 为3时,按上、下翻键,记录序号加减100,为4时,按上、下翻键,记录序号加减 1000。通过改变×的值,可快速查看前后历史记录数据。

4、历史记录数据曲线显示画面查看

在显示历史数据查看画面时,连续按曲线键,将依次循环显示瞬时流量、压力、温度百分

比曲线图型。

1.曲线显示画面包含8项内容:

温度。 对应曲线最右

边点的记录数据值,

如:瞬时流量 18.923 t/h;

压力 0.892 MPa;

温度 176.9 ℃

记录时间:如 08-12 16: 25,表示曲线最右边点对应的数据记录时间是: 08 月 12 日 16 点 25 分曲线对应的上下白分比标号:如瞬时流量上白分比为 85%,下百分比为

65%。中间部分是 48 点记录参数曲线 图,它与各自的测量上限数值成比例。 曲线最左边点数据距离最右边点 数据的记录时间差。它与设定的 记录间隔时间有关。如显示的

08hr (8小时)。记录序号,如1234。

记录序号范围在 0001~6000 间, 超过 6000 后自动返回到 0001。

曲线点前后移动速率设置。按下翻键 和上翻键,可对显示曲线进行前、后 移动,每次移动的点数用功能键进行 随机设置,可设置8种不同移动速率。 设置数值显示在屏幕下端中央位置。

设置显示 按下、上翻键时
←001→ 曲线前后移动:1点
←005→ 曲线前后移动:5点
←010→ 曲线前后移动:10点
←020→ 曲线前后移动:20点
←050→ 曲线前后移动:50点
←100→ 曲线前后移动:200点
←200→ 曲线前后移动:200点
←500→ 曲线前后移动:500点

记录曲线连续查看

按下、上翻键,对整条记录数据曲线进行查看。按曲线键分别查看瞬时、压力、 温度记录参数曲线。

按数据键可返回到历史记录数据查看显示画面。 按循环键退出历史记录数据查看显示。

 Image: 176.9 °C

 08-12 16 : 25

 80%

 0%

 55%

 08hr<</td>

 08hr

1 4

5、实时曲线显示画面查看

在显示运行参数画面时,按曲线键可将瞬时流量、压力、温度显示数据以连续曲线形 式进行显示。进入实时曲线显示画面后,连续按曲线键,分别显示瞬时流量、压力、温度 实时曲线。曲线点变化速率最快为 04S,最慢为 60S,通过按上翻键选择。

曲线显示内容说明:

曲线参数类型指示:如瞬时、压力、 温度。对应曲线最右边点的记录数 据值,

- 如:瞬时 21.837 t/h;
 - 压力 0.947 MPa;

温度 192.8 ℃

记录时间:如 09:15 30,表示曲线最 右边点对应的数据记录时间是:

09点15分30秒

曲线对应的上下白分比标号:如瞬 时流量上白分比为 85%,下百分比 为 65%中间部分是 48 点记录参数 曲线图,

它与各自的测量上限数值成比例。 04S:表示实时曲线采样速率为4秒。 可随机改变采样速率:按上翻键, 采样速率在04S到60S间变化。 实时曲线采样速率具有断电记忆。 但实

时曲线数据无断电记忆功能,

仪表断电再次上电后,重新采集实时曲线数据。在显示实时曲线时,连续按功能键 6 次可 清除所有实时曲线,重新进行实时曲线数据采集显示。

按循环键退出实时曲线查看显示。

八. 仪表安装接线及使用

1. 本仪表为盘装式仪表,横式结构,显示仪和打印机的开孔尺寸如下图:

3. 仪表后接线端子形式及定义如下图:

1	2	3	4	5	6	7	8	9	10	11	12
AC(L)	AC(N)	NC	24V+	24V-	Ρ	Т	СҮ	12V+	12V-	F	NC
22	20V		电流输入					脉冲输入			
	运行	п	电流输出			铂电阻输入					
	しして	ι		电流	制工	Ŧ	日电阻	削八			
RXD/A	Щи TXD/B	GND	PRINT	电流: MA+	前日 MA-	₽T-	PT-	n)八 PT+	NC	NC	NC

- 4. 接线说明:
 - 接线端子1、2接交流220V电源。
 - 接线端子 4、 5提供压变、温变和差压、模拟变送器+24V 工作电源,4 端为 24V 正,5 端为负。24V 正接 24V 供电的两线制压变、温变、差压、模拟变送 器正端。或三线制供电的压变、温变、差压、模拟变送器电源端。
 - 接线端子6(P)接压力变送器输电流出信号,接线端子7(T)接温度变送器输电
 流出信号,接线端子8(CY)接差压/模拟变送器输出电流出信号。
 - 接线端子 19 (PTB1-)、20 (PTB1-) 接测温铂电阻引出线一端,接线端子 21 (PTB1+)
 接测温铂电阻引出线另一端。测温铂电阻采用三线制接法。
 - 接线端子9、10提供涡街传感器器+12V工作电源,9端为正,10端为负。接线端子11(F)接涡街传感器输出脉冲信号。
 - 接线端子 17 (mA+)、18 (mA-)为模拟电流信号输出。模拟输出为:0~10mA
 或 4~20mA 电流信号。

当使用两线制 24V 供电的压变、温变、差压、模拟传感器时,按下面示意图接线。图内所标 数字为仪表接线端子排列号(见仪表后接线端

九. 配置打印机使用说明

- 与显示配套使用的是串行接口(RS232)微型打印机。该打印机已装配在一标准机箱 内,机箱中有+5V/3A 稳压电源,供微型打印机工作用。打印接口为 PC9 针 RS232 接 口。使用打印机时,可在打印机机箱后接线端子上接入 220V 交流电源,并将随机提 供的连接电缆线插到显示仪表上。
- 使用打印机前,设置自动打印起始时间和打印间隔时间。按打印机说明书,将打印机
 通信参数设置为:波特率 2400,8 位无校验,电平握手方式。
- 手动打印方法:接通电源,按参数键,在显示编程次数时,按进入键,打印机按下面 说明的格式进行参数随机打印。
- 4. 自动打印: 按设置的自动打印起始时间和打印间隔时间, 定时打印。
- 5. 打印内容不清晰时,可更换打印色带。
- 6. 打印内容和打印格式

打印内容: 温度(T),压力(P),瞬时量(Q),累计量(Σ),时间。

测量介质为蒸汽时打印格式为:

测量介质为空气或液体时打印格式为:

打印内容中 LXB-3Y 右边的数字为该表的打印识别编号,可通过设置编程参数中的通信地址选择。

5. 配涡街流量传感器仪表常数整数位大于四位时,累计量打印值最低位为小数位。

杨号	1	2	3	4	5	6	7	8	9
缈		RXD	TXD		GND				

打印机接口信号线说明(9 针 RS232)

十. 仪表工作方式说明

工作方式	测量介质	需配制一次表和设定参数	运算说明	必须选择设置的参数项
PC=1	饱和气	涡街+压变	补偿运算质量累计	压变参数,(FL 项,以下
PC=2	饱和气	涡街+铂电阻	补偿运算质量累计	FL项。
PC=3	饱和气	——————————————————————————————————————	补偿运算质量累计	温变参数
PC=4	饱和气	涡街+设定压力	补偿运算质量累计	设定压力值 Pn
PC=5	过热气	涡街+压变+铂电阻	补偿运算质量累计	压变参数
PC=6	过热气	<u> 涡街+压变+温变</u>	补偿运算质量累计	压变参数,温变参数
PC=7	过热气	涡街+压变+设定温度	补偿运算质量累计	压变参数,设定温度 Cn
PC=8	过热气	涡街+设定压力+设定温	补偿运算质量累计	设定压力 Pn,设定温度 Cn
PC=9	一般气体	涡街+压变+铂电阻	补偿运算标况体积累	压变参数
PC=10	一般气体	<u> 涡街+压变+温变</u>	补偿运算标况体积累	压变参数,温变参数
PC=11	一般气体	涡街+压变+设定温度	补偿运算标况体积累	压变参数,设定温度 Cn
PC=12	一般气体	涡街+设定压力+设定温	补偿运算标况体积累	设定压力 Pn,设定温度 Cn
PC=13	一般气体	涡街+压变+铂电阻	补偿运算质量累计	压变参数,设定密度 dn
PC = 14	与休	况街 + 压夺 + 设定温度	补 偿示 曾 质暑累计	压变参数,设定温度 Cn,
10-14			т□広冶开队呈示り	<u>设定密度</u> dn
PC=15	「「「「「」」「「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「	涡街	工况体积或质量累计	设定密度 dn

注: 压变参数共三项: 压变量程单位、压变量程(P)、压变输出电流(PA0); 温变参数共三项: 温变量程下限(CL)、 温变量程上限(CH)、 温变输出电流(CA0)。 PC=1~15时,为配涡街传感器工作方式,必须设置涡街传感器仪表常数 K,小信号切除 FL。FL 数值 设置依据参看附录中的仪表计算公式(四) 如测液体应选 PC=15,并设置密度 dn=1.000,累计单位为 m³。

工作方式说明

续表(一)

工作方式	测量介质	需配制一次表和设定参数	运算说明	必须选择设置的参数项
PC=16	饱和气	模拟电流+压变	补偿运算质量累计	模拟 FA 和 FAO, 压变参数
PC = 17	饱和气	模拟电流+设定压力	补偿运算质量累计	模拟 FA 和 FAO,设定压力 Pn
PC = 18	过热气	模拟电流+压变+铂电阻	补偿运算质量累计	模拟 FA 和 FAO, 压变参数
PC = 19	过热气	模拟电流+压变+设定温度	补偿运算质量累计	模拟 FA 和 FA0, 压变参数、设 定温度 Cn
PC = 20	过热气	模拟电流+设定压力、温度	补偿运算质量累计	模拟 FA 和 FA0,设定压力 Pn、 设定温度 Cn
PC=21	气体	模拟电流+压变+铂电阻	补偿运算标方累计	压模拟 FA 和 FA0, 压变参数
PC=22	气体	模拟电流+压变+设定温度	补偿运算标方累计	模拟 FA 和 FA0, 压变参数、设 定温度 Cn
PC = 23	气体	模拟电流+设定压力、温度	补偿运算标方累计	······· 模拟 FA 和 FAO,设定压力 Pn、 设定温度 Cn

工作方式	测量介质	需配制一次表和设定参数	运算说明	必须选择设置的参数项
				模拟 FA 和 FAO,压变参数、设
PC=24	气体	模拟电流+压变+铂电阻	补偿运算质量累计	定密度 dn
				压变参数、设定温度 Cn、
PC=25	气体	模拟电流+压变+设定温度	补偿运算质量累计	设定密度 dn, 模拟 FA 和 FA0
				模拟 FA 和 FAO,设定压力 Pn、
PC=26	气体	模拟电流+设定压力、温度	补偿运算质量累计	设定温度 Cn、设定密度 dn
PC=27	气体液体	模拟电流	体积累计	模拟 FA 和 FA0,设定密度 dn
PC = 28	饱和气	孔板+压变	补偿运算质量累计	差压参数,压变参数、
PC = 29	饱和气	孔板+设定压力	补偿运算质量累计	差压参数,设定压力 Pn、
PC=30	过热气	孔板+压变+铂电阻	补偿运算质量累计	差压参数,压变参数、
				差压参数,压变参数、温变参数
PC=31	过热气	孔板+压变+温变	补偿运算质量累计	
				关口会数 口亦会数 迅宁泪度
PC=32	过热气	孔板+压变+设定温度		
PC=33	过热气	孔板+设定压力+设定温度	│ │ 补偿运算质量累计	
				皮い
PC=34		按用户要求设计		
注:	」 玉で参数共三项:	」 「	」 、 压 	:

温变参数共三项:温变量程下限(CL)、温变量程上限(CH)、温变输出电流(CA0)。

差压参数共二项:差压量程(H)、差压输出电流(HAO);

PC=16~33 时,必须设置 FL 项, FL 项数值范围为: 0.0~9.9,表示百分比数值,即 0.0%~9.9%;

在 PC=16~27 时,表示此百分比以下的模拟电流输入不累计流量;在 PC=28~33 时,表示此百分比以下的差压信号 流量不累计。

(一) 配涡街流量传感器时计算公式:

工况体积累计公式: ▲瞬时量= $\frac{3600 \times F}{K}$ (m³/h)

标况体积累计公式:

▲瞬 时 量=
$$\frac{3600 \times F}{K} \frac{2931(1+9.869P)}{2731+t}$$
 (Nm³/h)

质量流量累计公式:

▲瞬 时 量=
$$\frac{3600 \times F \times \rho}{K}$$
 (kg/h)

(二) 配模拟电流输出传感器计算公式:

1) 0~10mA 输出型:

测量介质为气体时:

▲瞬 时
$$\equiv Q \max \frac{FA \cdot 2931(1+9.869P)}{10(2731+t)}$$
 (Nm³/h)

测量介质为蒸汽时:

▲ 瞬 时 量 = $Q \max \cdot \frac{FA}{10} \cdot \rho$ kg/h) 测量介质为液体时: ▲ 瞬 时 量 = $Q \max \cdot \frac{FA}{10}$ (m³/h) 2) 4~20mA 输出型: 测量介质为气体时: ▲ 瞬时量= $Q \max \frac{(FA-4) \cdot 293.1(1+9.869P)}{16(273.1+t)}$ (Nm³/h) 测量介质为蒸汽时: ▲ 瞬 时 量 = $Q \max \frac{FA-4}{16} \cdot \rho$ (kg/h) 介质为流行时:

所成为液体的:

$$Q \max \frac{FA-4}{16}$$

▲ 瞬 时 量 = (m³/h)

(三) 配孔板传感器计算公式:

质量流量计算公式:

▲ 瞬 时 量 =
$$U\sqrt{\Delta P \times \rho}$$
 (kg/h)

- 四) 涡街流量传感器下限信号频率 FL 计算公式:
- ▲ 下 限 频 率= Qmin.<u>K</u> 3600

符号说明:

- F: 流量脉冲频率 单位:Hz
- K: 流量传感器仪表常数 单位: N/m³
- †: 被测介质温度 单位:℃
- P: 被测介质表压力 Mpa (或 Kpa)
- ρ: 被测介质密度 单位: Kg/m³
- FA: 传感器输出模拟电流 单位: mA
- Qmax: 传感器流量量程 单位: m³/h
- Qmin: 涡街传感器下限流量 单位: m³/h
- ΔP: 差压值,单位 pa
- U: 孔板流量系数

 2^{6}

U=
$$\frac{C}{\sqrt{1-\beta^{*}}}$$
 0.0039986 ϵd^{2}
 $\beta = \frac{d}{D}$ 差压单位 pa
说明: v C: 流出系数
 β : 直径比
 ϵ : 流速膨胀系数 d: 节流孔板开孔直径, mm

D: 管道内径, mm

注: 本仪表测量气体时选用的标准状况,压力为 0.101325MPa,温度为 20℃。 饱 和气和过热气密度查表计算得出。

- 青岛自动化仪表有限公司
- 地址: 青岛市重庆北路路 16 号
- 邮编: 266108
- 电话: 0532-66916862
- 传真: 0532-66916837
- 网址: http://WWW.QLYB.CN